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In previous publications, three isentropic exponents, k,,. k7, k,;. have been introduced,
which when used in place of the classical isentropic exponent k=c,/c, in the ideal gas
isentropic change equations, the latter can describe very accurately the isentropic change
of real gases. The present work provides a general method for determining the values of
Kk ov. K1y, Ko7 Within the ranges of reduced pressure p, =0 to 10 and of reduced temperature
T.=1 to 3.5, thus allowing the calculation of the isentropic flow of those real gases for
which no detailed thermodynamic data are available. The accuracy obtained is limited
only by the accuracy of the generalized L.ee-Kesler equation of state, which is employed

in the method developed.
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introduction

In previous publications':>* three isentropic exponents, k,,,
kzy, kp7, have been introduced, which when used in place of the
classical isentropic exponent k=c,/c, (where c, and ¢, are the
constant pressure and constant volume specific heats, respec-
tively) in the ideal gas isentropic change equations, the latter
can describe very accurately the isentropic change of a real gas,
ie.
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Therefore, small or differential isentropic changes of real gases
may be calculated directly from the above equations. In the
case of extended isentropic changes, the calculation should be
performed step by step because, as is the case with k, the values
of the new exponents depend on the state variables. The
analytical expressions of the three exponents are*®
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Their values are not independent of each other; they are linked
by the equation*-°

kpo _ kpr
krp—1 kyp—1

The numerical values of k,,, kr,, k,r can be calculated by
use of Equations 4, 5, and 6, provided that the thermal and
caloric equations of state of the real gas under examination are
accurately known. Unfortunately, this is seldom the case, since
detailed thermodynamic data are available only for a few gases.
It is, therefore, necessary to make approximations by using
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generalized equations of state as, for example, are the Pitzer’
correlation, the Redlich-Kwong,® or the Redlich-Kwong-
Soave®!® generalized equation of state and the Lee-Kesler!?
correlation. In previous publications,!>!? the Redlich-Kwong
and the Redlich-Kwong-Soave correlations have been employed
for this purpose. In the present work the Lee-Kesler correlation
is employed for developing a more accurate and general method
for determining the values of k,,, kr,, k,r in the ranges of
reduced pressure and temperature p,=0 to 10, T,=1 to 3.5,
for those real gases for which not enough thermodynamic data
are available. The accuracy of the method is limited only by
the accuracy of the Lee-Kesler correlation, described later by
Equations 8 to 16.

The usefulness of the three real gas exponents in engineering
lies in the fact that they allow the use of the simple isentropic
change equations of the ideal gas to be applied with great
accuracy to real gases. The practical usefulness is also due to
the frequent appearance of the classical exponent k in various
relations encountered in fluid mechanics, gas dynamics, thermo-
dynamics, heat transfer, theory of internal combustion engines
and compressors, etc. For real gases, these relations become
more accurate if k is replaced by the appropriate real gas
exponent. Numerical examples® in real engineering situations
showed that the use of the real gas exponents leads (under the
conditions examined) to a 5% improvement in the accuracy of
the calculated value of the blow-by rate in internal combustion
engines, high-pressure compressors, or steam turbines, and to
a 50% improvement in the calculated value of pressure or
volume of the isentropic expansion or compression.

According to the Lee-Kester!! correlation, the compressibility
factor Z of a real gas is approximated as

2= _z+ 2 (z-2,) ®)

where p, v, T, w, R stand for the pressure, the specific volume,
the temperature, the acentric factor, and the constant of the
real gas under examination, and
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In the above equations p, (=p/p.) and T, (=T/T,) are the
reduced pressure and temperature, respectively, i.e., the pressure
and temperature normalized by the corresponding critical
values p., T.. Properties vy, and v,, denote reduced volumes,
whose values are different from the reduced volume v, (=v/v,)
corresponding to the pair of state variables p,, T,. Quantities
By, Cy, Dy, B,, C,, D, are defined as
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where coefficients b, ¢, d, B, y are given in Table 1.

Isentropic exponent k,,
Analytical calculation

The derivative (ép/dv)y in expression (4) is calculated by
differentiation of the equation of state py=ZR T, where the com-
pressibility factor Z is taken from the Lee-Kesler correlation
(8). After algebraic transformations, we get
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Table 1 Constants contained in Equations 9 to 16

b,,=0.1181193 €, =0.0236744 d,, x 10*=0.155488
b,=0.265728 Cp=0.0186984 dy, x 10°=0.623689
b,,=0.154790 Cpy=0.0 p,=0.65392
b,,=0.030323 Coe=0.042724 Yo=0.060167
b,,=0.2026579 ¢,,=0.0313385 d,, x10*=0.48736
b,=0.331511 ¢,,=0.0503618 d,; x 10*=0.0740336
b,,=0.027655 ¢,,=0.016801 p=1.226
b,,=0.203488 ¢,,=0.041577 ,=0.03754
where
T, (0Z
No=1——'( °) (18)
P: a"01' T,

D]
0.3978 D: dv avo, Ty

Derivatives (620/600,)T and (0Z,/0v,);, are calculated by
differentiation of Equatlons 9 and 10, rmpectlvely
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For the calculation of k,, for the real gas of interest, given the
values of p and T, the following steps are carried out:

(i) Calculate p, (=p/p;) and T, (=T/T,) using the critical

kpo= _Cv(0P) _%% (No+N,) 17 . values of p,, T, of the gas under examination.
¢, p\dv/r ¢, (ii) Solve Equation 9 for v,, and Equation 10 for v,,.
Notation T,T,T, Temperature, critical temperature, and
reduced temperature, respectively
v, Ug, ¥, Specific volume, critical specific volume,

(2]
]

Specific heat under constant pressure

C, Specific heat under constant volume

k Classical isentropic exponent, k=c,/c,

K po Real gas isentropic exponent
corresponding to the pair of variables p, v

kr, Real gas isentropic exponent
corresponding to the pair of variables T, v

kyr Real gas isentropic exponent
corresponding to the pair of variables p, T

My, M, Expressions defined by Equations 23 and
24, respectively

Nos Ny Expressions defined by Equations 18 and
19, respectively

Ds Pes Py Pressure, critical pressure, and reduced
pressure, respectively

R Gas constant

and reduced specific volume, respectively
Dor> Uy Reduced specific volumes defined by
Equations 2 and 3, respectively, different
from the reduced specific volume v,,
which corresponds to the pair of variables

P T,
z Compressibility factor
Zy, Z, Expressions defined by Equations 2 and
3, respectively
BOs COa DO . .
g Expressions defined by Equations 4 to 9
Bl” CI" Dl'
b ¢ ] y d $ ] 2] ] .
oi Coi» dois Fo yo}Constants (fori=1to4)givenin Table 1
brh Crir drh ﬂn Ye
0] Acentric factor
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Figure 1 Graphical representation of the isentropic exponent &,

(iii) Calculate (0Z,/0vo,)r, and (8Z,/0v,,)r, from Equations 20
and 21, respectively, [)y using the calculated values of v,
and v,,.

(iv) Calculate Noand N, from Equations 18 and 19, respectively.

(v) Using properties c,/c,, @ of the gas under examination and
the calculated values of Ny, N, calculate k,, from Equation
17. If the exact value of c,/c, is not known, it may be
approximated by the Lee-Kesler correlation, as described
in Ref. 11.

Graphical representation

The values of k,, for the gas of interest can be found directly
by use of the nomograph of Figure 1, which has been elaborated
on the basis of the procedure outlined above. Parts (a) and (b)
of the nomograph give the values of N, and N, respectively,
as a function of p, with T, as a parameter. In part (c) the value
of N, (taken on the vertical axis) is multiplied by the appropriate
value of w, and the product wN, is given on the horizontal
axis. In part (d) the values of N, and wN, (taken on the vertical
and on the horizontal axes, respectively) are added, and their
sum (N +@Nj) is read on the inclined axes. Finally, part (e)
multiplies the value of Ny+wN, by the appropriate value
of ¢,/c,, so the product (c,/c,)(Np+@N,), ie., the value of
k,,, is directly given on the k p,-axis.

An example of the use of the above nomograph is given
by the dotted lines (Figure 1), which illustrate the calculation of
k,, for air (w=0.035, p.=37.66 bar, T, = 132.52K) at p=100 bar
and T=473 K. For these values, p,=p/p.= 2.66, T,=T/T.=
3.57, and c,/c, (taken from Ref. 14) is 1.445. From the
nomograph of Figure 1, k,,=1.510. The exact value of ky,
at the same value of pressure and temperature is k,, = 1.512.2
Therefore, the error observed in this example is about 0.1%.
Additional tests made in the case of steam, refrigerants R12,
R22, and ammonia, for which detailed thermodynamic data
are available!3~1° gave results of a similar accuracy.

Isentropic exponent ky,
Analytical calculation

The derivative (0p/0T), in expression (5) is calculated by
differentiation of the equation of state py=ZRT, with Z taken
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from Equation 8. After algebraic transformations, we get

3 R R
k,v=1+3(—”> =140 (13—”—) 142 (Mp+oM;)  (22)
v v c

¢, \oT ¢, R\aT .
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1= (= Z+ i ) (5 (24)
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The derivatives (0Zo/dT,),,, and (0Z,/0T,),,, are calculated by
differentiation of Equations 9 and 10, respectively:

(%) =L<E’_<z+%£’o_s+3bm)+i(%_z_3%s>
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For the calculation of ky, for the real gas of interest, given
the values of p and T, the following steps are carried out:

(i) Calculate p, (=p/p.) and T, (=T/T.) using the critical

values p,, T, of the gas under examination.

(ii) Solve Equation 9 for v,, and Equation 10 for v,,.

(iii) Calculate (9Z,/dT;),,, and (0Z,/0T,),,, from Equations 25
and 26, respectively, by using the calculated values of v,
and v,,.

(iv) Calculate M, and M; from Equations 23 and 24,
respectively.

(v) Calculate kg, from Equation 22 using properties R/c,, ®
of the gas under examination and the calculated values of M,
M, . Ifthe exact value of ¢, is not known, it may be approximated
by the Lee-Kesler correlation, as described in Ref. 11.
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Figure 2 Graphical representation of the isentropic exponent &,
Graphical representation to 3.5. The method is applicable to those real gases for which

The values of kr, for the fluid of interest can be found directly
by use of the nomograph of Figure 2, which has been elaborated
on the basis of the procedure outlined above. Parts (a) and (b)

no detailed thermodynamic data are available. The accuracy
obtained is limited only by the accuracy of the Lee-Kesler
correlation, which is employed in the method developed.
Applications of the method in the case of the air, steam,

of the nomograph give the values of M, and M,, respectively, refrigerants R12, R22, and NH,, for which detailed thermo.

as a function of p,, with T, as a parameter. In part (c) the value
of M; (on the vertical axis) is multiplied by the appropriate
value of w, and the product wM, is given on the horizontal
axis. In part (d) the values of M, and wM, are added, and their
sum (M, +wM),) is given on the inclined axes. Finally, in part
(¢) the value of M, + wM, is multiplied by the appropriate value
of R/c, and unity is added to the product (R/c,)(M,+wM,), so
the value of ky,=1+(R/c,}(M,+wM,) is directly given on the
k. -axis.

An example of the use of the above nomograph is shown by 1
the dotted lines (Figure 2), which illustrate the calculation of
isentropic exponent ki, for the refrigerant R12 (for which
w=0.158, p. =42.063 kgf/cm?, T,=384.95 K) at p=_80kgf/cm?
and T=443 K. For these values, p,=p/p.=1.90, T,=T/T,=
1.15, and R/c, (taken from Ref. 17) is 0.0977. From the nomo-
graph of Figure 2, k;,=1.182. The exact value of k;, at the
same value of pressure and temperature is 1.180.!7 Therefore,
the error observed in this example is about 0.2%. Other tests 4
made in the case of air, steam, R22, and ammonia for which
detailed thermodynamic data are available!*'? gave results of
a similar accuracy.

[ ]

6
Isentropic exponent k,;
The third isentropic exponent &,y is calculated from Equation
7 with the values of k,, and kr,, contained in this equation, 7
calculated either analytically as described in the second and
third sections, or by use of the nomographs of Figures 1 and 8
2 as outlined in the second and third sections, respectively. 9
Conclusion 10
A method has been presented for the calculation of the three 11

real gas isentropic exponents, k,,, kr,, k,r in the ranges of
reduced pressure p, =1 to 10 and of reduced temperature T.=1

Int. J. Heat and Fluid Flow, Vol. 9, No. 4, December 1988

dynamic data are available, yielded results very close to the
exact values, in the pressure and temperature ranges examined.
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